By Topic

Empirical Likelihood Ratio Test With Distribution Function Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yingxi Liu ; Dept. of Electr. & Comput. Eng., Univ. of Texas at Austin, Austin, TX, USA ; Tewfik, A.

In this work, we study non-parametric hypothesis testing problem with distribution function constraints. The empirical likelihood ratio test has been widely used in testing problems with moment (in)equality constraints. However, some detection problems cannot be described using moment (in)equalities. We propose a distribution function constraint along with an empirical likelihood ratio test. This detector is applicable to a wide variety of robust parametric/non-parametric detection problems. Since the distribution function constraints provide a more exact description of the null hypothesis, the test outperforms the empirical likelihood ratio test with moment constraints as well as many popular goodness-of-fit tests, such as the robust Kolmogorov-Smirnov test and the Cramér-von Mises test. Examples from communication systems with real-world noise samples are provided to show their performance. Specifically, the proposed test significantly outperforms the robust Kolmogorov-Smirnov test and the Cramér-von Mises test when the null hypothesis is nested in the alternative hypothesis. The same example is repeated when we assume no noise uncertainty. By doing so, we are able to claim that in our case, it is necessary to include uncertainty in noise distribution. Additionally, the asymptotic optimality of the proposed test is provided.

Published in:

Signal Processing, IEEE Transactions on  (Volume:61 ,  Issue: 18 )