By Topic

On Identity Disclosure Control for Hypergraph-Based Data Publishing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yidong Li ; School of Computer and Information Technology, Beijing Jiaotong University, China ; Hong Shen

Data publishing based on hypergraphs is becoming increasingly popular due to its power in representing multirelations among objects. However, security issues have been little studied on this subject, while most recent work only focuses on the protection of relational data or graphs. As a major privacy breach, identity disclosure reveals the identification of entities with certain background knowledge known by an adversary. In this paper, we first introduce a novel background knowledge attack model based on the property of hyperedge ranks, and formalize the rank-based hypergraph anonymization problem. We then propose a complete solution in a two-step framework: rank anonymization and hypergraph reconstruction. We also take hypergraph clustering (known as community detection) as data utility into consideration, and discuss two metrics to quantify information loss incurred in the perturbation. Our approaches are effective in terms of efficacy, privacy, and utility. The algorithms run in near-quadratic time on hypergraph size, and protect data from rank attacks with almost the same utility preserved. The performances of the methods have been validated by extensive experiments on real-world datasets as well. Our rank-based attack model and algorithms for rank anonymization and hypergraph reconstruction are, to our best knowledge, the first systematic study to privacy preserving for hypergraph-based data publishing.

Published in:

IEEE Transactions on Information Forensics and Security  (Volume:8 ,  Issue: 8 )