By Topic

Sparse Attack Construction and State Estimation in the Smart Grid: Centralized and Distributed Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ozay, M. ; Dept. of Electr. Eng., Princeton Univ., Princeton, NJ, USA ; Esnaola, I. ; Vural, F.T.Y. ; Kulkarni, S.R.
more authors

New methods that exploit sparse structures arising in smart grid networks are proposed for the state estimation problem when data injection attacks are present. First, construction strategies for unobservable sparse data injection attacks on power grids are proposed for an attacker with access to all network information and nodes. Specifically, novel formulations for the optimization problem that provide a flexible design of the trade-off between performance and false alarm are proposed. In addition, the centralized case is extended to a distributed framework for both the estimation and attack problems. Different distributed scenarios are proposed depending on assumptions that lead to the spreading of the resources, network nodes and players. Consequently, for each of the presented frameworks a corresponding optimization problem is introduced jointly with an algorithm to solve it. The validity of the presented procedures in real settings is studied through extensive simulations in the IEEE test systems.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:31 ,  Issue: 7 )