By Topic

Control of ultrasonic transducers for machining applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Saleem, A. ; Dept. of Mech. Eng., Taibah Univ., Al-Madinah Al-Monawara, Saudi Arabia ; Salah, M. ; Ahmad, N. ; Silberschmidt, V.

Ultrasonically Assisted Machining (UAM) is an emerging technology that has proven to be very efficient in improving the surface finishing in material machining such as turning, milling, and drilling. Smart material actuators are used in such applications to vibrate the cutting tip while machining, hence, improving the manipulated surface. In order to achieve that, it is required to vibrate the cutting tip at certain frequency with certain amplitude. In fact, controlling the amplitude of these smart actuators is a tedious and difficult task due to the inherent nonlinearities associated with smart materials. In this paper, two control algorithms are proposed; sliding mode controller with high frequency (SMHF) and proportional-integral controller with RMS (PIRMS). Numerical simulations are presented to demonstrate the effectiveness of using the proposed controller. The PIRMS algorithm demonstrates a better performance when compared with the SMHF algorithm.

Published in:

Mechatronics and its Applications (ISMA), 2013 9th International Symposium on

Date of Conference:

9-11 April 2013