Cart (Loading....) | Create Account
Close category search window

Dual neural classification for robust fault diagnosis in robotic manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Khireddine, M.S. ; Electron. Dept., Batna Univ., Batna, Algeria ; Boutarfa, A. ; Slimane, N.

A fault, if undetected, could have catastrophic consequences (in systems such as aircraft, robotic systems and nuclear reactors) and could incur financial losses (such as in a production process). In this paper the artificial neural networks are used for both residual generation and residual analysis. A Multilayer Perceptron (MLP) is employed to reproduce the dynamics of the robotic manipulator. Its outputs are compared with actual position and velocity measurements, generating the so-called residual vector. The residuals, when properly analyzed, provide an indication of the status of the robot (normal or faulty operation). The ANN architecture employed in the residual analysis is also a multilayer perceptron (MLP) or a radial basis function network (RBFN) which uses the residuals of position and velocity to perform fault identification. Simulations employing a SCARA robotic manipulator are showed demonstrating that the system can detect and isolate correctly faults that can occur during the performance of its task. We opted in our study on fault diagnosis for a dual neural classification. Thus, the architecture of the proposed approach is based on two types of classifiers: Firstly a classifier consisting only of one neural network (MLP or RBF) followed by a comparison of the results of detection and localization. Secondly a classifier consisting of two neural networks (RBF and MLP) and is followed by a final decision system.

Published in:

Mechatronics and its Applications (ISMA), 2013 9th International Symposium on

Date of Conference:

9-11 April 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.