By Topic

Novel technique for bidirectional series-resonant DC/DC converter in discontinuous mode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Federico Ibanez ; Electronics and communications, CEIT, Paseo Mikeletegui 48, San Sebastián 20009, Spain ; Jose Martin Echeverria ; Luis Fontan

This study analyses a novel technique for obtaining a voltage conversion ratio greater than one in a bidirectional seriesresonant DC/DC converter (SRC). The converter works in a discontinuous mode: it transfers energy in packets, but it also accumulates some packets in order to raise the output voltage. This study presents a comprehensive theoretical analysis for the two modes: the step-down mode (common mode) and the novel step-up mode. The converter transfers energy during fixed time intervals (called states), and it is also able to accumulate energy in a novel state called the accumulation state. With this, the circuit can achieve a voltage conversion ratio of up to two. In addition, a design methodology is presented, and it is validated in the design of a high-current bidirectional DC/DC converter for battery applications. The results of the voltage conversion ratio and efficiency measurement are presented along with a comparison with an resonant LLC converter. The converter reaches an efficiency rate of 91% and the voltage conversion ratio varies from 0.8 to 1.22 at maximum power. Using this novel technique, the SRC can now be used in a bidirectional DC/DC converter applied to energy storage devices, such as batteries or supercapacitors.

Published in:

IET Power Electronics  (Volume:6 ,  Issue: 5 )