By Topic

Simplified procedure for correcting both errors and erasures of Reed-Solomon code using Euclidean algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Truong, T.K. ; Commun. Syst. Res. Section, Jet Propulsion Lab., Pasadena, CA, USA ; Hsu, I.S. ; Eastman, W.L. ; Reed, I.S.

It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial and the error evaluator polynomial in Berlekamp's key equation that is needed to decode a Reed-Solomon (RS) code. In the paper, a simplified procedure is developed and proved to correct erasures as well as errors by replacing the initial condition of the Euclidean algorithm by the erasure locator polynomial and the Forney syndrome polynomial. By this means, the errata locator polynomial and the errata evaluator polynomial can be obtained simultaneously and simply, by the Euclidean algorithm only. With this improved technique, the complexity of time-domain Reed-Solomon decoders for correcting both errors and erasures is reduced substantially from previous approaches. As a consequence, decoders for correcting both errors and erasures of RS codes can be made more modular, regular, simple, and naturally suitable for both VLSI and software implementation. An example illustrating this modified decoding procedure is given for a (15, 9) RS code.

Published in:

Computers and Digital Techniques, IEE Proceedings E  (Volume:135 ,  Issue: 6 )