By Topic

Low-complexity selected mapping scheme using cyclic-shifted inverse fast Fourier transform for peak-to-average power ratio reduction in orthogonal frequency division multiplexing systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kee-hoon Kim ; Department of Electrical and Computing Engineering, INMC, Seoul National University, Seoul 151-744, Korea ; Hyun-bae Jeon ; Jong-seon No ; Dong-joon Shin

In this study, a new peak-to-average power ratio (PAPR) reduction scheme for orthogonal frequency division multiplexing (OFDM) is proposed based on the selected mapping (SLM) scheme. The proposed SLM scheme generates alternative OFDM signal sequences by cyclically shifting the connections in each subblock at an intermediate stage of inverse fast Fourier transform (IFFT). Compared with the conventional SLM scheme, the proposed SLM scheme achieves similar PAPR reduction performance with much lower computational complexity and no bit error rate degradation. The performance of the proposed SLM scheme is analysed mathematically and verified through numerical analysis. Also, it is shown that the proposed SLM scheme has the lowest computational complexity among the existing low-complexity SLM schemes exploiting the signals at an intermediate stage of IFFT.

Published in:

IET Communications  (Volume:7 ,  Issue: 8 )