By Topic

Model and Performance of a No-Reference Quality Assessment Metric for Video Streaming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Seyedebrahimi, M. ; Sch. of Eng. & Appl. Sci., Aston Univ., Birmingham, UK ; Bailey, C. ; Xiao-Hong Peng

Video streaming via Transmission Control Protocol (TCP) networks has become a popular and highly demanded service, but its quality assessment in both objective and subjective terms has not been properly addressed. In this paper, based on statistical analysis a full analytic model of a no-reference objective metric, namely pause intensity (PI), for video quality assessment is presented. The model characterizes the video playout buffer behavior in connection with the network performance (throughput) and the video playout rate. This allows for instant quality measurement and control without requiring a reference video. PI specifically addresses the need for assessing the quality issue in terms of the continuity in the playout of TCP streaming videos, which cannot be properly measured by other objective metrics such as peak signal-to-noise-ratio, structural similarity, and buffer underrun or pause frequency. The performance of the analytical model is rigidly verified by simulation results and subjective tests using a range of video clips. It is demonstrated that PI is closely correlated with viewers' opinion scores regardless of the vastly different composition of individual elements, such as pause duration and pause frequency which jointly constitute this new quality metric. It is also shown that the correlation performance of PI is consistent and content independent.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:23 ,  Issue: 12 )