Cart (Loading....) | Create Account
Close category search window
 

Contact resistivity reduction through interfacial layer doping in metal-interfacial layer-semiconductor contacts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Gupta, Shashank ; Applied Materials, Inc., Santa Clara, California 94085, USA ; Paramahans Manik, Prashanth ; Kesh Mishra, Ravi ; Nainani, Aneesh
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4811340 

Metal-induced-gap-states model for Fermi-level pinning in metal-semiconductor contacts has been extended to metal-interfacial layer (IL)-semiconductor (MIS) contacts using a physics-based approach. Contact resistivity simulations evaluating various ILs on n-Ge indicate the possibility of forming low resistance contacts using TiO2, ZnO, and Sn-doped In2O3 (ITO) layers. Doping of the IL is proposed as an additional knob for lowering MIS contact resistance. This is demonstrated through simulations and experimentally verified with circular-transfer length method and diode measurements on Ti/n+-ZnO/n-Ge and Ti/ITO/n-Ge MIS contacts.

Published in:

Journal of Applied Physics  (Volume:113 ,  Issue: 23 )

Date of Publication:

Jun 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.