Cart (Loading....) | Create Account
Close category search window
 

Sliding Mode Control for Spatial Stabilization of Advanced Heavy Water Reactor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Munje, R.K. ; S.G.G.S Inst. of Eng. & Technol., Nanded, India ; Patre, B.M. ; Shimjith, S.R. ; Tiwari, A.P.

Spatial oscillations in neutron flux distribution resulting from xenon reactivity feedback are a matter of concern in large nuclear reactors. If the spatial oscillations in power distribution are not controlled, power density and rate of change of power at some locations in the reactor core may exceed their respective limits causing increase in chances of fuel failure. Hence, during the design stages of any large nuclear reactor, it is essential to identify the existence of spatial instabilities and to design suitable control strategy for regulating the spatial power distribution. This paper presents a method to design and analyze the effect of sliding mode control (SMC) for spatial control of Advanced Heavy Water Reactor (AHWR). The AHWR model considered here is of 90th order with 5 inputs and 18 outputs. In this paper, numerically ill-conditioned system of AHWR is separated into 73rd order `slow' subsystem and 17th order `fast' subsystem and SMC is designed from slow subsystem. Further, using simple linear transformation matrices, SMC for full system is constructed. Also, it is proved that slow subsystem SMC results in a sliding mode motion for full system. Dynamic simulations has been carried out using nodal core model of AHWR to show effectiveness and robustness of proposed method.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:60 ,  Issue: 4 )

Date of Publication:

Aug. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.