By Topic

Oblivious decision program evaluation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Salman Niksefat ; Amirkabir University of Technology, Tehran, Iran ; Babak Sadeghiyan ; Payman Mohassel

In this study, the authors design efficient protocols for a number of `oblivious decision program (DP) evaluation' problems. Consider a general form of the problem where a client who holds a private input interacts with a server who holds a private DP (e.g. a decision tree or a branching program) with the goal of evaluating his input on the DP without learning any additional information. Many known private database query problems such as symmetric private information retrieval and private keyword search can be formulated as special cases of this problem. Most of the existing works on the same problem focus on optimising communication. However, in some environments (supported by a few experimental studies), it is the computation and not the communication that may be the performance bottleneck. In this study, we design `computationally efficient' protocols for the above general problem, and a few of its special cases. In addition to being one-round and requiring a small amount of work by the client (in the RAM model), the proposed protocols only require a small number of exponentiations (independent of the server's input) by both parties. The proposed constructions are, in essence, efficient and black-box reductions of the above problem to 1-out-of-2 oblivious transfer. It is proved that the proposed protocols secure (private) against `malicious' adversaries in the standard ideal/real-world simulation-based paradigm.

Published in:

IET Information Security  (Volume:7 ,  Issue: 2 )