By Topic

The Effects of Solar Irradiance Spectra on Calculation of Narrow Band Top-of-Atmosphere Reflectance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Lifu Zhang ; Sch. of Earth & Space Sci., Peking Univ., Beijing, China ; Shunshi Hu ; Hang Yang ; Taixia Wu
more authors

Extraterrestrial solar irradiance spectra detail the solar energy distribution over wavelengths, and numerous solar irradiance models are available within the remote sensing community. However, reference spectra may differ widely owing to differences in solar activity, measurement instruments and calibration. Six widely referenced solar spectra were selected in this work to examine their differences and the impacts of these differences on calculations of narrow band top-of-atmosphere reflectance using MERIS and Hyperion hyperspectral sensor spectral configurations. Mean solar exoatmospheric irradiance (MSEI) was computed using the different solar irradiance models and spectral response functions of the MERIS and Hyperion hyperspectral sensors. Then, the effects of MSEI on top-of-atmosphere (TOA) reflectance and the normalized difference vegetation index (NDVI) and atmospherically resistant vegetation index (ARVI) were investigated. The results show that the six selected solar irradiance models have significant differences from 350 to 2500 nm, which in turn result in differences in the MSEI derived from MERIS and Hyperion observations. These differences have a less significant effect on the TOA reflectance in the visible and near-infrared bands and on NDVI. However, the differences result in large differences in TOA reflectance in the infrared bands and in ARVI.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:7 ,  Issue: 1 )