Cart (Loading....) | Create Account
Close category search window
 

A Post-Stroke Rehabilitation System Integrating Robotics, VR and High-Resolution EEG Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Steinisch, M. ; BIND-Behavioral Imaging & Neural Dynamics Center, Univ. G. d'Annunzio Chieti, Chieti, Italy ; Tana, M.G. ; Comani, S.

We propose a system for the neuro-motor rehabilitation of upper limbs in stroke survivors. The system is composed of a passive robotic device (Trackhold) for kinematic tracking and gravity compensation, five dedicated virtual reality (VR) applications for training of distinct movement patterns, and high-resolution EEG for synchronous monitoring of cortical activity. In contrast to active devices, the Trackhold omits actuators for increased patient safety and acceptance levels, and for reduced complexity and costs. VR applications present all relevant information for task execution as easy-to-understand graphics that do not need any written or verbal instructions. High-resolution electroencephalography (HR-EEG) is synchronized with kinematic data acquisition, allowing for the epoching of EEG signals on the basis of movement-related temporal events. Two healthy volunteers participated in a feasibility study and performed a protocol suggested for the rehabilitation of post-stroke patients. Kinematic data were analyzed by means of in-house code. Open source packages (EEGLAB, SPM, and GMAC) and in-house code were used to process the neurological data. Results from kinematic and EEG data analysis are in line with knowledge from currently available literature and theoretical predictions, and demonstrate the feasibility and potential usefulness of the proposed rehabilitation system to monitor neuro-motor recovery.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 5 )

Date of Publication:

Sept. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.