By Topic

Benchmarking HEp-2 Cells Classification Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Foggia, P. ; Dept. of Inf. Eng., Electr. Eng. & Appl. Math., Univ. of Salerno, Fisciano, Italy ; Percannella, G. ; Soda, P. ; Vento, M.

In this paper, we report on the first edition of the HEp-2 Cells Classification contest, held at the 2012 edition of the International Conference on Pattern Recognition, and focused on indirect immunofluorescence (IIF) image analysis. The IIF methodology is used to detect autoimmune diseases by searching for antibodies in the patient serum but, unfortunately, it is still a subjective method that depends too heavily on the experience and expertise of the physician. This has been the motivation behind the recent initial developments of computer aided diagnosis systems in this field. The contest aimed to bring together researchers interested in the performance evaluation of algorithms for IIF image analysis: 28 different recognition systems able to automatically recognize the staining pattern of cells within IIF images were tested on the same undisclosed dataset. In particular, the dataset takes into account the six staining patterns that occur most frequently in the daily diagnostic practice: centromere, nucleolar, homogeneous, fine speckled, coarse speckled, and cytoplasmic. In the paper, we briefly describe all the submitted methods, analyze the obtained results, and discuss the design choices conditioning the performance of each method.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:32 ,  Issue: 10 )