By Topic

Multistability of Two Kinds of Recurrent Neural Networks With Activation Functions Symmetrical About the Origin on the Phase Plane

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhigang Zeng ; Sch. of Comput., Eng. & Math., Univ. of Western Sydney, Sydney, NSW, Australia ; Wei Xing Zheng

In this paper, we investigate multistability of two kinds of recurrent neural networks with time-varying delays and activation functions symmetrical about the origin on the phase plane. One kind of activation function is with zero slope at the origin on the phase plane, while the other is with nonzero slope at the origin on the phase plane. We derive sufficient conditions under which these two kinds of n-dimensional recurrent neural networks are guaranteed to have (2m+1)n equilibrium points, with (m+1)n of them being locally exponentially stable. These new conditions improve and extend the existing multistability results for recurrent neural networks. Finally, the validity and performance of the theoretical results are demonstrated through two numerical examples.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:24 ,  Issue: 11 )