By Topic

Robot reliability through fuzzy Markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Leuschen, M.L. ; Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA ; Walker, I.D. ; Cavallaro, J.R.

In the past few years, new applications of robots have increased the importance of robotic reliability and fault tolerance. Standard approaches of reliability engineering rely on the probability model, which is often inappropriate for this task due to a lack of sufficient probabilistic information during the design and prototyping phases. Fuzzy logic offers an alternative to the probability paradigm, possibility, that is much more appropriate to reliability in the robotic context. Fuzzy Markov modeling, the technique developed in this paper, is a technique for analyzing fault tolerant designs under considerable uncertainty, such as is seen in compilations of component failure rates. It is sufficiently detailed to provide useful information while maintaining the fuzziness (uncertainty) inherent in the situation. It works well in conjunction with fuzzy fault trees, a well-established fuzzy reliability tool. Perhaps most importantly, it builds directly on existing reliability techniques, making it easy to add to reliability toolboxes

Published in:

Reliability and Maintainability Symposium, 1998. Proceedings., Annual

Date of Conference:

19-22 Jan 1998