Cart (Loading....) | Create Account
Close category search window
 

Fe-Doped Armchair Graphene Nanoribbons for Spintronic/Interconnect Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jaiswal, N.K. ; Dept. of Appl. Sci., ABV-Indian Inst. of Inf. Technol. & Manage. (ABV-IIITM), Gwalior, India ; Srivastava, P.

In this study, we investigate structural stability, and electronic and transport properties of Fe terminated/doped armchair graphene nanoribbons (AGNR) through first-principles calculations based on density functional theory. Results show that substitutional Fe impurities have a stable bonding with AGNR and center of the ribbon is regarded as the most preferred doping site. The observed magnetic moment of an Fe atom varies from 1.95 μB to 2.93 μB depending upon the doping site. The electronic structure calculations reveal breaking of degeneracy for the opposite spin states which is further supported by the density of states and the projected density of state analysis. Spin polarization of 60% was obtained which can be tuned by varying the position of Fe atoms. Moreover, there exist a number of conduction channels crossing the Fermi level and thereby causing high metallicity for all the ribbons irrespective of ribbon widths or the position of Fe impurity. The observed high metallic behavior is further confirmed by the transmission spectrum and current versus voltage ( I-V) calculations. The present results show the potential of considered nanoribbons for the spintronic/interconnect applications.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:12 ,  Issue: 5 )

Date of Publication:

Sept. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.