By Topic

Markov Approximation for Combinatorial Network Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Minghua Chen ; Dept. of Inf. Eng., Chinese Univ. of Hong Kong, Hong Kong, China ; Soung Chang Liew ; Ziyu Shao ; Caihong Kai

Many important network design problems are fundamentally combinatorial optimization problems. A large number of such problems, however, cannot readily be tackled by distributed algorithms. The Markov approximation framework studied in this paper is a general technique for synthesizing distributed algorithms. We show that when using the log-sum-exp function to approximate the optimal value of any combinatorial problem, we end up with a solution that can be interpreted as the stationary probability distribution of a class of time-reversible Markov chains. Selected Markov chains among this class yield distributed algorithms that solve the log-sum-exp approximated combinatorial network optimization problem. By examining three applications, we illustrate that the Markov approximation technique not only provides fresh perspectives to existing distributed solutions, but also provides clues leading to the construction of new distributed algorithms in various domains with provable performance. We believe the Markov approximation techniques will find applications in many other network optimization problems.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 10 )