By Topic

Feature Coding in Image Classification: A Comprehensive Study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yongzhen Huang ; Nat. Lab. of Pattern Recognition (NLPR), Inst. of Autom., Beijing, China ; Zifeng Wu ; Liang Wang ; Tieniu Tan

Image classification is a hot topic in computer vision and pattern recognition. Feature coding, as a key component of image classification, has been widely studied over the past several years, and a number of coding algorithms have been proposed. However, there is no comprehensive study concerning the connections between different coding methods, especially how they have evolved. In this paper, we first make a survey on various feature coding methods, including their motivations and mathematical representations, and then exploit their relations, based on which a taxonomy is proposed to reveal their evolution. Further, we summarize the main characteristics of current algorithms, each of which is shared by several coding strategies. Finally, we choose several representatives from different kinds of coding approaches and empirically evaluate them with respect to the size of the codebook and the number of training samples on several widely used databases (15-Scenes, Caltech-256, PASCAL VOC07, and SUN397). Experimental findings firmly justify our theoretical analysis, which is expected to benefit both practical applications and future research.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:36 ,  Issue: 3 )