Cart (Loading....) | Create Account
Close category search window
 

Visualizing the Variability of Gradients in Uncertain 2D Scalar Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pfaffelmoser, T. ; Comput. Graphics & Visualization Group, Tech. Univ. Munchen, Bavaria, Germany ; Mihai, M. ; Westermann, R.

In uncertain scalar fields where data values vary with a certain probability, the strength of this variability indicates the confidence in the data. It does not, however, allow inferring on the effect of uncertainty on differential quantities such as the gradient, which depend on the variability of the rate of change of the data. Analyzing the variability of gradients is nonetheless more complicated, since, unlike scalars, gradients vary in both strength and direction. This requires initially the mathematical derivation of their respective value ranges, and then the development of effective analysis techniques for these ranges. This paper takes a first step into this direction: Based on the stochastic modeling of uncertainty via multivariate random variables, we start by deriving uncertainty parameters, such as the mean and the covariance matrix, for gradients in uncertain discrete scalar fields. We do not make any assumption about the distribution of the random variables. Then, for the first time to our best knowledge, we develop a mathematical framework for computing confidence intervals for both the gradient orientation and the strength of the derivative in any prescribed direction, for instance, the mean gradient direction. While this framework generalizes to 3D uncertain scalar fields, we concentrate on the visualization of the resulting intervals in 2D fields. We propose a novel color diffusion scheme to visualize both the absolute variability of the derivative strength and its magnitude relative to the mean values. A special family of circular glyphs is introduced to convey the uncertainty in gradient orientation. For a number of synthetic and real-world data sets, we demonstrate the use of our approach for analyzing the stability of certain features in uncertain 2D scalar fields, with respect to both local derivatives and feature orientation.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:19 ,  Issue: 11 )

Date of Publication:

Nov. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.