We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Acceleration factor determination for potential-induced degradation in crystalline silicon PV modules

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Hacke, P. ; Nat. Renewable Energy Lab. (NREL), Golden, CO, USA ; Smith, R. ; Terwilliger, K. ; Glick, S.
more authors

Potential-induced degradation in conventional p-type silicon-based photovoltaic solar cell modules is described as a failure mechanism involving positive ion migration, understood to be primarily Na+, drifting from the glass to the cells in negative-voltage arrays. Acceleration factors for this mechanism are determined for silicon photovoltaic modules by comparing the module power during degradation outdoors to that in accelerated testing at three temperatures and 85% relative humidity. A lognormal analysis is applied to the accelerated lifetime test data considering failure at 80% of the initial module power. Activation energy of 0.73 eV for the rate of failure is determined for the chamber testing at the constant relative humidity, and the probability of module failure at an arbitrary temperature is predicted. Estimation of module power in-situ in the environmental chamber is achieved using dark I-V measurements transformed by superposition. By this means, the power of the degrading module can be semi-continuously determined so that statistical data for multiple modules undergoing potential-induced degradation can be easily and accurately obtained.

Published in:

Reliability Physics Symposium (IRPS), 2013 IEEE International

Date of Conference:

14-18 April 2013