Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

A 0.007-mm2 108- {\rm p\pm}/^{\circ } {\rm C} 1-MHz Relaxation Oscillator for High-Temperature Applications up to 180 ^{\circ } {\rm C} in 0.13- \mu {\rm m} CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sadeghi, N. ; Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC, Canada ; Sharif-Bakhtiar, A. ; Mirabbasi, S.

Reliable high-temperature CMOS oscillators are required for clock or time-base generation in several applications including data acquisition for aerospace, automotive control, oil field instrumentation, and pulp and paper digesters. In this paper, we present low-complexity resistive and capacitive temperature-compensation techniques for CMOS relaxation oscillators. In such oscillators, the frequency of oscillation is a function of a resistor-capacitor product. The resistive compensation technique employs a recently proposed monolithic resistor with a given temperature coefficient (TC) that uses contacts to adjust the TC of the resistor. The capacitive compensation technique is based on using a varactor to adjust the value of the timing capacitance over temperature to compensate for the high-temperature junction leakage current and to keep the oscillation frequency relatively constant. A prototype oscillator based on the proposed techniques is implemented in a standard 0.13-μm CMOS process and reliably operates over 25 to 180 °C. Measured results show that over the temperature range of interest the compensated oscillator achieves a temperature coefficient of 108 ppm/°C. The oscillator along with its output drivers occupies 7200 μm2 (2.3 × to 114 × smaller than state-of-the-art designs) and consumes 428 μW from a 2.5 V supply. For supply variations between 2 and 3 V, the frequency variation is ±1.09%/V.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:60 ,  Issue: 7 )