Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

An Achievable Rate Region for the Broadcast Channel With Feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Venkataramanan, R. ; Dept. of Eng., Univ. of Cambridge, Cambridge, UK ; Pradhan, S.S.

A single-letter achievable rate region is proposed for the two-receiver discrete memoryless broadcast channel with generalized feedback. The coding strategy involves block-Markov superposition coding using Marton's coding scheme for the broadcast channel without feedback as the starting point. If the message rates in the Marton scheme are too high to be decoded at the end of a block, each receiver is left with a list of messages compatible with its output. Resolution information is sent in the following block to enable each receiver to resolve its list. The key observation is that the resolution information of the first receiver is correlated with that of the second. This correlated information is efficiently transmitted via joint source-channel coding, using ideas similar to the Han-Costa coding scheme. Using the result, we obtain an achievable rate region for the stochastically degraded additive white Gaussian noise broadcast channel with noisy feedback from only one receiver. It is shown that this region is strictly larger than the no-feedback capacity region.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 10 )