By Topic

Comparison of Advanced Machine Learning Tools for Disruption Prediction and Disruption Studies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Odstrcil, M. ; Inst. of Plasma Phys., Prague, Czech Republic ; Murari, A. ; Mlynar, J.

Machine learning tools have been used since a long time ago to study disruptions and to predict their occurrence. On the other hand, the challenges posed by the quality and quantities of the data available remain substantial. In this paper, methods to optimize the training data set and the potential of kernels-based advanced machine learning tools are explored and assessed. Various alternatives, ranging from appropriate selection of the weights to the inclusion of artificial points, are investigated to improve the quality of the training data set. Support vector machines (SVM), relevance vector machines (RVMs), and one-class SVM are compared. The relative performances of the different approaches are initially assessed using synthetic data. Then they are applied to a relatively large database of JET disruptions. It is shown that in terms of final results, the optimization of the training databases proved to be very productive. Further, the RVM algorithm performs well when it is trained on a small set of discharges compared to the traditional methods.

Published in:

Plasma Science, IEEE Transactions on  (Volume:41 ,  Issue: 7 )