By Topic

Estimating Colloidal Concentration Using Acoustic Backscatter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Fuller, C.B. ; Dept. of Environ. Eng., Clarkson Univ., Potsdam, NY, USA ; Bonner, J.S. ; Islam, M.S. ; Ojo, T.
more authors

Interest has grown for using acoustic Doppler current profilers (ADCPs) to measure suspended solids concentrations (SSC) in aqueous environments because of the ability to make simultaneous unobtrusive long-term multipoint measurements with high spatial and temporal resolutions. The acoustic backscatter intensity (ABS) measured by ADCPs is a function of the particle size distribution, concentration, and incident acoustic signal strength and thus provides the theoretical basis for measuring SSC. The applicability of using ABS from a 2400-kHz ADCP to estimate SSC in units of volume concentration over variable particle size distributions is evaluated in a controlled laboratory study. Results from this research show a log-linear relationship between ABS and volume concentrations over variable size distributions. Volume concentrations predicted from the sonar equation using measured ABS and empirically derived response coefficients compare well with the measured concentrations over the full range of concentrations and particle size distributions tested. The ABS response is shown to be linear with the theoretical Rayleigh scattering target strength, calculated from the empirical particle size distribution, and thus explains the observed linearity over a variable particle size distribution. These results indicate that ABS can be used to provide meaningful volume concentration estimates for characteristically variable colloidal suspensions.

Published in:

Sensors Journal, IEEE  (Volume:13 ,  Issue: 11 )