By Topic

Anomaly Detection and Localization in Crowded Scenes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Weixin Li ; Univ. of California, San Diego, La Jolla, CA, USA ; Mahadevan, V. ; Vasconcelos, N.

The detection and localization of anomalous behaviors in crowded scenes is considered, and a joint detector of temporal and spatial anomalies is proposed. The proposed detector is based on a video representation that accounts for both appearance and dynamics, using a set of mixture of dynamic textures models. These models are used to implement 1) a center-surround discriminant saliency detector that produces spatial saliency scores, and 2) a model of normal behavior that is learned from training data and produces temporal saliency scores. Spatial and temporal anomaly maps are then defined at multiple spatial scales, by considering the scores of these operators at progressively larger regions of support. The multiscale scores act as potentials of a conditional random field that guarantees global consistency of the anomaly judgments. A data set of densely crowded pedestrian walkways is introduced and used to evaluate the proposed anomaly detector. Experiments on this and other data sets show that the latter achieves state-of-the-art anomaly detection results.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:36 ,  Issue: 1 )