Scheduled System Maintenance:
On April 27th, single article purchases and IEEE account management will be unavailable from 2:00 PM - 4:00 PM ET (18:00 - 20:00 UTC).
We apologize for the inconvenience.
By Topic

Overhead-aware compositional analysis of real-time systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
5 Author(s)
Phan, L.T.X. ; Dept. of Comput. & Inf. Sci., Univ. of Pennsylvania, Philadelphia, PA, USA ; Meng Xu ; Jaewoo Lee ; Insup Lee
more authors

Over the past decade, interface-based compositional schedulability analysis has emerged as an effective method for guaranteeing real-time properties in complex systems. Several interfaces and interface computation methods have been developed, and they offer a range of tradeoffs between the complexity and the accuracy of the analysis. However, none of the existing methods consider platform overheads in the component interfaces. As a result, although the analysis results are sound in theory, the systems may violate their timing constraints when running on realistic platforms. This is due to various overheads, such as task release delays, interrupts, cache effects, and context switches. Simple solutions, such as increasing the interface budget or the tasks' worst-case execution times by a fixed amount, are either unsafe (because of the overhead accumulation problem) or they waste a lot of resources. In this paper, we present an overhead-aware compositional analysis technique that can account for platform overheads in the representation and computation of component interfaces. Our technique extends previous overhead accounting methods, but it additionally addresses the new challenges that are specific to the compositional scheduling setting. To demonstrate that our technique is practical, we report results from an extensive evaluation on a realistic platform.

Published in:

Real-Time and Embedded Technology and Applications Symposium (RTAS), 2013 IEEE 19th

Date of Conference:

9-11 April 2013