By Topic

SecureCore: A multicore-based intrusion detection architecture for real-time embedded systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Man-Ki Yoon ; Dept. of Comput. Sci., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Mohan, S. ; Jaesik Choi ; Jung-Eun Kim
more authors

Security violations are becoming more common in real-time systems - an area that was considered to be invulnerable in the past - as evidenced by the recent W32.Stuxnet and Duqu worms. A failure to protect such systems from malicious entities could result in significant harm to both humans as well as the environment. The increasing use of multicore architectures in such systems exacerbates the problem since shared resources on these processors increase the risk of being compromised. In this paper, we present the SecureCore framework that, coupled with novel monitoring techniques, is able to improve the security of realtime embedded systems. We aim to detect malicious activities by analyzing and observing the inherent properties of the real-time system using statistical analyses of their execution profiles. With careful analysis based on these profiles, we are able to detect malicious code execution as soon as it happens and also ensure that the physical system remains safe.

Published in:

Real-Time and Embedded Technology and Applications Symposium (RTAS), 2013 IEEE 19th

Date of Conference:

9-11 April 2013