By Topic

Diffusion Maps for Signal Processing: A Deeper Look at Manifold-Learning Techniques Based on Kernels and Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Talmon, R. ; Math. Dept., Yale Univ., New Haven, CT, USA ; Cohen, I. ; Gannot, S. ; Coifman, R.

Signal processing methods have significantly changed over the last several decades. Traditional methods were usually based on parametric statistical inference and linear filters. These frameworks have helped to develop efficient algorithms that have often been suitable for implementation on digital signal processing (DSP) systems. Over the years, DSP systems have advanced rapidly, and their computational capabilities have been substantially increased. This development has enabled contemporary signal processing algorithms to incorporate more computations. Consequently, we have recently experienced a growing interaction between signal processing and machine-learning approaches, e.g., Bayesian networks, graphical models, and kernel-based methods, whose computational burden is usually high.

Published in:

Signal Processing Magazine, IEEE  (Volume:30 ,  Issue: 4 )