By Topic

Spatiotemporal Learning via Infinite-Dimensional Bayesian Filtering and Smoothing: A Look at Gaussian Process Regression Through Kalman Filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sarkka, S. ; Dept. of Biomed. Eng. & Comput. Sci., Aalto Univ., Espoo, Finland ; Solin, A. ; Hartikainen, J.

Gaussian process-based machine learning is a powerful Bayesian paradigm for nonparametric nonlinear regression and classification. In this article, we discuss connections of Gaussian process regression with Kalman filtering and present methods for converting spatiotemporal Gaussian process regression problems into infinite-dimensional state-space models. This formulation allows for use of computationally efficient infinite-dimensional Kalman filtering and smoothing methods, or more general Bayesian filtering and smoothing methods, which reduces the problematic cubic complexity of Gaussian process regression in the number of time steps into linear time complexity. The implication of this is that the use of machine-learning models in signal processing becomes computationally feasible, and it opens the possibility to combine machine-learning techniques with signal processing methods.

Published in:

Signal Processing Magazine, IEEE  (Volume:30 ,  Issue: 4 )