By Topic

Large Visual Repository Search with Hash Collision Design Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Visual search over large image repositories in real time is one of the key challenges for applications such as mobile visual query-by-capture, augmented reality, and biometrics-based identification. Search accuracy and response speed are two important performance factors. This article focuses on one of the important elements of this technology that enables large-scale visual search: indexing (or hashing). Indexing is the process of organizing a database of searchable elements into an efficiently searchable configuration. The searchable elements in our case are compact features extracted from images. This article explores a new indexing scheme. The authors optimize the design of a hash-code collision and counting scheme to enable fast search of visual features of MPEG CDVS.

Published in:

MultiMedia, IEEE  (Volume:20 ,  Issue: 2 )