By Topic

Packet-switched optical networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

We describe a testbed to study both the theoretical aspects and physical implementation issues associated with high-bit-rate, multihop, packet-switched OTDM networks. We have found that using optical time-division-multiplexed (OTDM) techniques can greatly increase the bandwidth of a single-wavelength channel. Ultrafast OTDM networks are excellent candidates for meeting the system requirements for massively parallel processor interconnects, which include low latency, high bandwidth, and immunity to electromagnetic interference. High-bit-rate transparent optical networks (or TONs) for multiprocessor interconnects will be best realized with an OTDM network architecture. To fully use the bandwidth of optical fiber, we spaced the picosecond pulses closely together (about 10 ps) and typically applied a return-to-zero modulation format. While the total capacity of TDM and wavelength division multiplexing (WDM) networks may essentially be the same, TDM systems have better throughput delay performance. They also have faster, single-channel access times for high-data-rate end users such as HDTV video servers, terabyte-media data banks, and supercomputers

Published in:

IEEE Micro  (Volume:18 ,  Issue: 1 )