By Topic

Birefringence imaging for optical sensing of tissue damage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lixin Chin ; Opt.+Biomed. Imaging Lab., Univ. of Western Australia, Crawley, WA, Australia ; Xiaojie Yang ; McLaughlin, R.A. ; Noble, P.B.
more authors

We present an automated technique to detect and quantify damage to biological tissue by sensing changes in the tissue's optical birefringence. Birefringence is a property of many types of tissue, which decreases with damage. Using a polarisation-sensitive optical coherence tomography scanner, the method first acquires a 3D scan of the area of tissue under analysis. By calculating the birefringence at each location on the surface of the tissue, we build a 2D image indicative of the biological microstructure, with areas of abnormally low birefringence indicating tissue damage. The technique is demonstrated using a model of localised thermal damage on porcine tendon. The resulting birefringence images are validated against a histological gold standard, showing strong correspondence between areas of low and high birefringence, and areas of damaged and undamaged tissue respectively.

Published in:

Intelligent Sensors, Sensor Networks and Information Processing, 2013 IEEE Eighth International Conference on

Date of Conference:

2-5 April 2013