Cart (Loading....) | Create Account
Close category search window
 

Multi-Frequency Electrical Impedance Tomography System With Automatic Self-Calibration for Long-Term Monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hun Wi ; Dept. of Biomed. Eng., Kyung Hee Univ., Yongin, South Korea ; Sohal, H. ; McEwan, A.L. ; Eung Je Woo
more authors

Electrical Impedance Tomography (EIT) is a safe medical imaging technology, requiring no ionizing or heating radiation, as opposed to most other imaging modalities. This has led to a clinical interest in its use for long-term monitoring, possibly at the bedside, for ventilation monitoring, bleeding detection, gastric emptying and epilepsy foci diagnosis. These long-term applications demand auto-calibration and high stability over long time periods. To address this need we have developed a new multi-frequency EIT system called the KHU Mark2.5 with automatic self-calibration and cooperation with other devices via a timing signal for synchronization with other medical instruments. The impedance measurement module (IMM) for flexible configuration as a key component includes an independent constant current source, an independent differential voltmeter, and a current source calibrator, which allows automatic self-calibration of the current source within each IMM. We installed a resistor phantom inside the KHU Mark2.5 EIT system for intra-channel and inter-channel calibrations of all voltmeters in multiple IMMs. We show the deterioration of performance of an EIT system over time and the improvement due to automatic self-calibration. The system is able to maintain SNR of 80 dB for frequencies up to 250 kHz and below 0.5% reciprocity error over continuous operation for 24 hours. Automatic calibration at least every 3 days is shown to maintain SNR above 75 dB and reciprocity error below 0.7% over 7 days at 1 kHz. A clear degradation in performance results with increasing time between automatic calibrations allowing the tailoring of calibration to suit the performance requirements of each application.

Published in:

Biomedical Circuits and Systems, IEEE Transactions on  (Volume:8 ,  Issue: 1 )

Date of Publication:

Feb. 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.