Cart (Loading....) | Create Account
Close category search window
 

Control of Infrared Spectral Absorptance With One-Dimensional Subwavelength Gratings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nghia Nguyen-Huu ; Dept. of Mater. Sci. & Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Yu-Lung Lo

The wavelength-selective infrared absorptance of a single-layered aluminum subwavelength structure (SWS) is optimized using a hybrid numerical scheme comprising the rigorous coupled-wave analysis method and a genetic algorithm. The results show that the optimized SWS yields a strong absorptance peak (0.99) and a full-width-at-half-maximum (FWHM) of 1.42 μm. In addition, it is shown that the absorptance spectrum of the SWS is insensitive to the angle of incidence of the incoming light and the grating period, but shifts toward a longer (shorter) wavelength as the grating thickness or grating ridge width is increased (decreased). The enhanced absorptance is examined by computing the governing equations of the excitations of Rayleigh-Wood anomaly, surface plasmon polaritons, cavity resonance, and magnetic polaritons. The magnetic field patterns and Poynting vector distribution within the grating structure are also analyzed to support the physical mechanism using the finite-difference time-domain (FDTD) method. The results indicate that the absorptance peak of the SWS is the result of cavity resonance. Also, for a double-layered SWS comprising an aluminum grating and a dielectric layer, a widening of the absorptance spectrum occurs. Overall, the results presented in this study show that SWS gratings which can be easily manufactured using microfabrication technology provide a simple and versatile solution for such applications in tailoring the spectral absorptance used for infrared detection, energy harvesting, and so on.

Published in:

Lightwave Technology, Journal of  (Volume:31 ,  Issue: 15 )

Date of Publication:

Aug.1, 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.