By Topic

Analysis, Design, Modeling, and Characterization of Low-Loss Scalable On-Chip Transformers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Luuk F. Tiemeijer ; NXP Central R&D, AE Eindhoven, The Netherlands ; Ralf M. T. Pijper ; Cristian Andrei ; Emmanuel Grenados

A few important design choices for a low-loss scalable on-chip transformer are discussed, the most important one being that the capacitive and inductive couplings should be aligned to minimize insertion loss. The importance of these design choices is illustrated both theoretically as well as experimentally. In particular, for the first time the performance of these on-chip transformers is verified with four-port S -parameter measurements taken up to 67 GHz. With that, an insertion loss of only 0.6 dB up to 30 GHz is demonstrated. To facilitate the use of these low-loss on-chip transformers in the RF integrated-circuit design flow, a scalable compact equivalent-circuit model suitable for all pre-layout circuit simulations is described, which accurately predicts transformation ratios, transmission efficiencies and balun amplitude and phase imbalances.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:61 ,  Issue: 7 )