Cart (Loading....) | Create Account
Close category search window
 

Human Identification From ECG Signals Via Sparse Representation of Local Segments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wang, J. ; Center for Intelligent Systems Research and Institute for Frontier Materials, Deakin University, Melbourne, Australia ; She, M. ; Nahavandi, S. ; Kouzani, A.

This work proposes a novel framework to extract compact and discriminative features from Electrocardiogram (ECG) signals for human identification based on sparse representation of local segments. Specifically, local segments extracted from an ECG signal are projected to a small number of basic elements in a dictionary, which is learned from training data. A final representation is extracted by performing a max pooling procedure over all the sparse coefficient vectors in the ECG signal. Unlike most of existing methods for human identification from ECG signals which require segmentation of individual heartbeats or extraction of fiducial points, the proposed method does not need to segment individual heartbeats or detect any fiducial points. The method achieves an 99.48% accuracy on a 100 subjects dataset constructed from a publicly available database, which demonstrates that both local and global structural information are well captured to characterize the ECG signals.

Published in:

Signal Processing Letters, IEEE  (Volume:20 ,  Issue: 10 )

Date of Publication:

Oct. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.