By Topic

In vivo estimation of cardiovascular flows with surface integration of velocity vectors from color Doppler imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
J. Brandberg ; Dept. of Biomed. Eng., Linkoping Univ., Sweden ; B. J. Sjoberg ; P. Wodlin ; D. Loyd
more authors

Ultrasound can be used to noninvasively study the pumping heart. To be able to obtain more accurate flow estimates, we have designed the Surface Integration of Velocity Vectors (SIVV) echocardiographic method for angle independent determination of cardiac flow. The aim is to develop a noninvasive method for quantification of volume flows that can be used instead of the invasive methods that exist today. Using gated and time-delayed electrocardiographic acquisitions, Doppler data (Vingmed CFM 800) was collected for consecutive heart beats. Left ventricular inflow and outflow regions were studied. The SIVV analysis with velocity information from a variable number of planes as well as different wall filters and the time correction algorithm as described by Eidenvall et al. (1992), are implemented. Preliminary data from stroke volume determination agrees well (8% difference, 67 ml by SIVV versus 62 ml by the Fick equation)

Published in:

Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE  (Volume:3 )

Date of Conference:

31 Oct-3 Nov 1996