Cart (Loading....) | Create Account
Close category search window
 

METIS: Exploring mobile phone sensing offloading for efficiently supporting social sensing applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Rachuri, K.K. ; Comput. Lab., Univ. of Cambridge, Cambridge, UK ; Efstratiou, C. ; Leontiadis, I. ; Mascolo, C.
more authors

Mobile phones play a pivotal role in supporting ubiquitous and unobtrusive sensing of human activities. However, maintaining a highly accurate record of a user's behavior throughout the day imposes significant energy demands on the phone's battery. In this paper, we present the design, implementation, and evaluation of METIS: an adaptive mobile sensing platform that efficiently supports social sensing applications. The platform implements a novel sensor task distribution scheme that dynamically decides whether to perform sensing on the phone or in the infrastructure, considering the energy consumption, accuracy, and mobility patterns of the user. By comparing the sensing distribution scheme with sensing performed solely on the phone or exclusively on the fixed remote sensors, we show, through benchmarks using real traces, that the opportunistic sensing distribution achieves over 60% and 40% energy savings, respectively. This is confirmed through a real world deployment in an office environment for over a month: we developed a social application over our frameworks, that is able to infer the collaborations and meetings of the users. In this setting the system preserves over 35% more battery life over pure phone sensing.

Published in:

Pervasive Computing and Communications (PerCom), 2013 IEEE International Conference on

Date of Conference:

18-22 March 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.