Cart (Loading....) | Create Account
Close category search window
 

Model of an Excitatory Synapse Based on Stochastic Processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
L'Esperance, P.-Y. ; Dept. of Mathematic & Ind. Eng., Ecole Polytech. de Montreal, Montréal, QC, Canada ; Labib, R.

We present a mathematical model of a biological synapse based on stochastic processes to establish the temporal behavior of the postsynaptic potential following a quantal synaptic transmission. This potential form is the basis of the neural code. We suppose that the release of neurotransmitters in the synaptic cleft follows a Poisson process, and that they diffuse according to integrated Ornstein-Uhlenbeck processes in 3-D with random initial positions and velocities. The diffusion occurs in an isotropic environment between two infinite parallel planes representing the pre- and postsynaptic membrane. We state that the presynaptic membrane is perfectly reflecting and that the other is perfectly absorbing. The activation of the receptors polarizes the postsynaptic membrane according to a parallel RC circuit scheme. We present the results obtained by simulations according to a Gillespie algorithm and we show that our model exhibits realistic postsynaptic behaviors from a simple quantal occurrence.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:24 ,  Issue: 9 )

Date of Publication:

Sept. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.