By Topic

Retrieval of 30-m-Resolution Leaf Area Index From China HJ-1 CCD Data and MODIS Products Through a Dynamic Bayesian Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yonghua Qu ; State Key Lab. of Remote Sensing Sci., Beijing Normal Univ., Beijing, China ; Yuzhen Zhang ; Huazhu Xue

The leaf area index (LAI) is a characteristic parameter of vegetation canopies. This parameter is significant in research on global climate change and ecological environments. The China HJ-1 satellite has a revisit cycle of four days and provides CCD (HJ-1 CCD) data with a resolution of 30 m. However, the HJ-1 CCD is incapable of obtaining observations at multiple angles. This is problematic because single-angle observations provide insufficient data for determining the LAI. This article proposes a new method for determining the LAI using the HJ-1 CCD data. The proposed method uses background knowledge of the dynamic land surface processes that is extracted from MODerate resolution Imaging Spectroradiometer (MODIS) LAI data with a resolution of 1 km. The proposed method was implemented in a dynamitic Bayesian network scheme by integrating an LAI dynamic process model and a canopy reflectance model with the remotely sensed data. The validation was conducted using field LAI data collected in the Guantao County of the Hebei Province in China. The results showed that the determination coefficient between the estimated and the measured LAI was 0.791, and the RMSE was 0.61. The results suggest that this algorithm can be widely applied to determine high-resolution leaf area indexes using data from the China HJ-1 satellite even if the information from single-angle observations are insufficient for quantitative application.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:7 ,  Issue: 1 )