By Topic

On the Geometry of Covariance Matrices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lipeng Ning ; Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Xianhua Jiang ; Georgiou, T.

We introduce and compare certain distance measures between covariance matrices. These originate in information theory, quantum mechanics and optimal transport. More specifically, we show that the Bures/Hellinger distance between covariance matrices coincides with the Wasserstein-2 distance between the corresponding Gaussian distributions. We also note that this Bures/Hellinger/Wasserstein distance can be expressed as the solution to a linear matrix inequality (LMI). A consequence of this fact is that the computational cost in covariance approximation problems scales nicely with the size of the matrices involved. We discuss the relevance of this metric in spectral-line detection and spectral morphing.

Published in:

Signal Processing Letters, IEEE  (Volume:20 ,  Issue: 8 )