By Topic

A Low Power Micro Deep Brain Stimulation Device for Murine Preclinical Research

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
5 Author(s)
Abbas Z. Kouzani ; School of Engineering, Deakin University, Waurn Ponds, Australia ; Osama A. Abulseoud ; Susannah J. Tye ; Md Kamal Hosain
more authors

Deep brain stimulation has emerged as an effective medical procedure that has therapeutic efficacy in a number of neuropsychiatric disorders. Preclinical research involving laboratory animals is being conducted to study the principles, mechanisms, and therapeutic effects of deep brain stimulation. A bottleneck is, however, the lack of deep brain stimulation devices that enable long term brain stimulation in freely moving laboratory animals. Most of the existing devices employ complex circuitry, and are thus bulky. These devices are usually connected to the electrode that is implanted into the animal brain using long fixed wires. In long term behavioral trials, however, laboratory animals often need to continuously receive brain stimulation for days without interruption, which is difficult with existing technology. This paper presents a low power and lightweight portable microdeep brain stimulation device for laboratory animals. Three different configurations of the device are presented as follows: 1) single piece head mountable; 2) single piece back mountable; and 3) two piece back mountable. The device can be easily carried by the animal during the course of a clinical trial, and that it can produce non-stop stimulation current pulses of desired characteristics for over 12 days on a single battery. It employs passive charge balancing to minimize undesirable effects on the target tissue. The results of bench, in-vitro, and in-vivo tests to evaluate the performance of the device are presented.

Published in:

IEEE Journal of Translational Engineering in Health and Medicine  (Volume:1 )