By Topic

Hardware-Efficient Low-Power Image Processing System for Wireless Capsule Endoscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Turcza, P. ; AGH Univ. of Sci. & Technol., Krakow, Poland ; Duplaga, M.

This paper presents the design of a hardware-efficient, low-power image processing system for next-generation wireless endoscopy. The presented system is composed of a custom CMOS image sensor, a dedicated image compressor, a forward error correction (FEC) encoder protecting radio transmitted data against random and burst errors, a radio data transmitter, and a controller supervising all operations of the system. The most significant part of the system is the image compressor. It is based on an integer version of a discrete cosine transform and a novel, low complexity yet efficient, entropy encoder making use of an adaptive Golomb-Rice algorithm instead of Huffman tables. The novel hardware-efficient architecture designed for the presented system enables on-the-fly compression of the acquired image. Instant compression, together with elimination of the necessity of retransmitting erroneously received data by their prior FEC encoding, significantly reduces the size of the required memory in comparison to previous systems. The presented system was prototyped in a single, low-power, 65-nm field programmable gate arrays (FPGA) chip. Its power consumption is low and comparable to other application-specific-integrated-circuits-based systems, despite FPGA-based implementation.

Published in:

Biomedical and Health Informatics, IEEE Journal of  (Volume:17 ,  Issue: 6 )