By Topic

Atomistic Study of the Lattice Thermal Conductivity of Rough Graphene Nanoribbons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hossein Karamitaheri ; Institute for Microeletronics, Technische Universität Wien, Wien, Austria ; Mahdi Pourfath ; Rahim Faez ; Hans Kosina

Following our recent study on the electronic properties of rough nanoribbons , in this paper the role of geometrical and roughness parameters on the thermal properties of armchair graphene nanoribbons is studied. Employing a fourth nearest-neighbor force constant model in conjuction with the nonequilibrium Green's function method the effect of line-edge-roughness on the lattice thermal conductivity of rough nanoribbons is investigated. The results show that a reduction of about three orders of magnitude of the thermal conductivity can occur for ribbons narrower than 10 nm. The results indicate that the diffusive thermal conductivity and the effective mean free path are directly proportional to the ribbon's width and the roughness correlation length, but inversely proportional to the roughness amplitude. Based on the numerical results an analytical model for the thermal conductivity of narrow armchair graphene nanoribbons is proposed in this paper. The developed model can be used in the analysis of graphene-based nano transistors and thermoelectric devices, where the appropriate selection of geometrical and roughness parameters are essential for optimizing the thermal properties.

Published in:

IEEE Transactions on Electron Devices  (Volume:60 ,  Issue: 7 )