By Topic

Electrothermal Simulation and Thermal Performance Study of GaN Vertical and Lateral Power Transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Yuhao Zhang ; Microsyst. Technol. Labs., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Min Sun ; Zhihong Liu ; Piedra, D.
more authors

In this paper, we present self-consistent electrothermal simulations of single-finger and multifinger GaN vertical metal-oxide-semiconductor field-effect transistors (MOSFETs) and lateral AlGaN/GaN high-electron-mobility transistors (HEMTs) and compare their thermal performance. The models are first validated by comparison with experimental dc characteristics, and then used to study the maximum achievable power density of the device without the peak temperature exceeding a safe operation limit of 150°C (P150°C). It is found that the vertical MOSFETs have the potential to achieve a higher P150°C than the lateral HEMTs, especially for higher breakdown voltages and higher scaling level designs.

Published in:

Electron Devices, IEEE Transactions on  (Volume:60 ,  Issue: 7 )