Cart (Loading....) | Create Account
Close category search window
 

A Nonlocal Weighted Joint Sparse Representation Classification Method for Hyperspectral Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hongyan Zhang ; State Key Lab. of Inf. Eng. in Surveying, Mapping, & Remote Sensing, Wuhan Univ., Wuhan, China ; Jiayi Li ; Yuancheng Huang ; Liangpei Zhang

As a powerful and promising statistical signal modeling technique, sparse representation has been widely used in various image processing and analysis fields. For hyperspectral image classification, previous studies have shown the effectiveness of the sparsity-based classification methods. In this paper, we propose a nonlocal weighted joint sparse representation classification (NLW-JSRC) method to improve the hyperspectral image classification result. In the joint sparsity model (JSM), different weights are utilized for different neighboring pixels around the central test pixel. The weight of one specific neighboring pixel is determined by the structural similarity between the neighboring pixel and the central test pixel, which is referred to as a nonlocal weighting scheme. In this paper, the simultaneous orthogonal matching pursuit technique is used to solve the nonlocal weighted joint sparsity model (NLW-JSM). The proposed classification algorithm was tested on three hyperspectral images. The experimental results suggest that the proposed algorithm performs better than the other sparsity-based algorithms and the classical support vector machine hyperspectral classifier.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:7 ,  Issue: 6 )

Date of Publication:

June 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.