By Topic

Total Ionizing Dose Effects in MOS and Low-Dose-Rate-Sensitive Linear-Bipolar Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Fleetwood, D.M. ; Electr. Eng. & Comput. Sci. Dept., Vanderbilt Univ., Nashville, TN, USA

An overview is presented of total ionizing dose (TID) effects in MOS and bipolar devices from a historical perspective, focusing primarily on work presented at the annual IEEE Nuclear and Space Radiation Effects Conference (NSREC). From the founding of the IEEE NSREC in 1964 until ~1976, foundational work led to the discovery of TID effects in MOS devices, the characterization of basic charge transport and trapping processes in SiO2, and the development of the first generations of metal-gate radiation-hardened MOS technologies. From ~1977 until ~1985, significant progress was made in the understanding of critical defects and impurities that limit the radiation response of MOS devices. These include O vacancies in SiO2, dangling Si bonds at the Si/SiO2 interface, and hydrogen. In addition, radiation-hardened Si-gate CMOS technologies were developed. From ~1986 until ~1997, a significant focus was placed on understanding postirradiation effects in MOS devices and implementing hardness assurance test methods to qualify devices for use in space systems. Enhanced low-dose-rate sensitivity (ELDRS) was discovered and investigated in linear bipolar devices and integrated circuits. From ~1998 until the present, an increasing focus has been placed on theoretical studies enabled by rapidly advancing computational capabilities, modeling and simulation, effects in ultra-thin oxides and alternative dielectrics to SiO2, and in developing a comprehensive model of ELDRS.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:60 ,  Issue: 3 )