By Topic

Distributed Cache Management in Information-Centric Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sourlas, V. ; Dept. of Comput. & Commun. Engin., Univ. of Thessaly, Volos, Greece ; Gkatzikis, L. ; Flegkas, P. ; Tassiulas, L.

The main promise of current research efforts in the area of Information-Centric Networking (ICN) architectures is to optimize the dissemination of information within transient communication relationships of endpoints. Efficient caching of information is key to delivering on this promise. In this paper, we look into achieving this promise from the angle of managed replication of information. Management decisions are made in order to efficiently place replicas of information in dedicated storage devices attached to nodes of the network. In contrast to traditional off-line external management systems we adopt a distributed autonomic management architecture where management intelligence is placed inside the network. Particularly, we present an autonomic cache management approach for ICNs, where distributed managers residing in cache-enabled nodes decide on which information items to cache. We propose four on-line intra-domain cache management algorithms with different level of autonomicity and compare them with respect to performance, complexity, execution time and message exchange overhead. Additionally, we derive a lower bound of the overall network traffic cost for a certain category of network topologies. Our extensive simulations, using realistic network topologies and synthetic workload generators, signify the importance of network wide knowledge and cooperation.

Published in:

Network and Service Management, IEEE Transactions on  (Volume:10 ,  Issue: 3 )